ls_mlkit.model.decoder_tf package¶
Submodules¶
Module contents¶
- class ls_mlkit.model.decoder_tf.CausalLanguageModel(vocab_size, embed_dim, num_head, dropout=0, num_block=3, max_pos_len=5000, batch_first=True)[source]¶
Bases:
Module- forward(x: Tensor, att_mask: Tensor = None, key_padding_mask: Tensor = None, need_weights: bool = True, average_attn_weights: bool = True, use_cache: bool = False, past_key_values: Tensor = None, is_causal: bool = True, need_hidden_states: bool = False)[source]¶
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class ls_mlkit.model.decoder_tf.CausalLanguageModelConfig(vocab_size=32000, embed_dim=1024, num_head=2, dropout=0, num_block=3, max_pos_len=5000, batch_first=True, **kwargs)[source]¶
Bases:
object
- class ls_mlkit.model.decoder_tf.CausalLanguageModelConfigForAuto(vocab_size=30000, embed_dim=1024, num_head=2, dropout=0, num_block=3, max_pos_len=5000, batch_first=True, **kwargs)[source]¶
Bases:
PretrainedConfig- model_type: str = 'D-TF-no-PE'¶
- class ls_mlkit.model.decoder_tf.CausalLanguageModelForAuto(config: CausalLanguageModelConfigForAuto)[source]¶
Bases:
PreTrainedModel,GenerationMixin- base_model_prefix = 'zls_causal_tf'¶
- config_class¶
alias of
CausalLanguageModelConfigForAuto
- forward(input_ids: LongTensor = None, attention_mask: Tensor | None = None, output_attentions: bool | None = True, average_attn_weights: bool = True, position_ids: LongTensor | None = None, past_key_values=None, inputs_embeds: FloatTensor | None = None, labels: LongTensor | None = None, use_cache: bool | None = False, output_hidden_states: bool | None = None, return_dict: bool | None = None, cache_position: LongTensor | None = None)[source]¶
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- get_input_embeddings()[source]¶
Returns the model’s input embeddings.
- Returns:
A torch module mapping vocabulary to hidden states.
- Return type:
nn.Module
- get_output_embeddings()[source]¶
Returns the model’s output embeddings.
- Returns:
A torch module mapping hidden states to vocabulary.
- Return type:
nn.Module
- prepare_inputs_for_generation(input_ids, past_key_values=None, attention_mask=None, **kwargs)[source]¶
Prepare the model inputs for generation. In includes operations like computing the 4D attention mask or slicing inputs given the existing cache.
See the forward pass in the model documentation for expected arguments (different models might have different requirements for e.g. past_key_values). This function should work as is for most LLMs.